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We are in the process of setting up an ICOOL simulation of Valeri Balbekov’s four-sided cooling ring [1]
for the MUCOOL experiment, which is shown in Fig. 1.  At present we are working with hard-edged
models of the ring magnets. The ultimate goal is to develop a model with more realistic field profiles.

1.  Problem geometry

The model consists of a 4-sided ring with circumference [1]

C = 36.955 m

Each quadrant of the ring is identical. The geometric aspects of the elements are summarized in the
following table.

element radius [m] length [m] Σ length [m]
drift 0.60 0.072018 0.072 018
RF1-8 0.57 8 × 0.32 2.632 018
drift 0.60 0.04 2.672 018
LH2 0.31 1.334 4.006 018
drift 0.60 0.04 4.046 018
RF9-16 0.57 8 × 0.32 6.606 018
drift 0.60 0.072018 6.678 036
dipole 0.52 0.408 407 7.086 443
drift + wedge 0.29 1.7439 8.830 343
dipole 0.52 0.408 407 9.238 750
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2.  Field modeling

COMBINED FUNCTION DIPOLE

The radius of the particle in the LAB is

r = ρ + x

where ρ is the radius of curvature and the transverse coordinates (x,y) are measured relative to the reference
trajectory. On the magnet midplane the vertical field is

and the horizontal field vanishes. Define

w = y / r

Off the midplane the field is given is given by the expansions [2]

and

The field is taken as uniform along the longitudinal direction and to end abruptly at the hard edge.

SOLENOIDS

The solenoids are modeled with current sheets. The relative current densities are taken from [1] and then
multiplied by an adjustable scale factor to produce the desired field strength on-axis. The files include
additional current sheets beyond the physical geometric region to simulate the effect of magnetic mirrors at
the solenoid ends. The effect of the fringe fields at the ends of the solenoids are approximated by transverse
momentum kicks that are proportional to the radius of the particle. The symmetry of the kick orientation
repeats twice each turn. Starting with a long straight section we used the series {- +  - -  + -  + +}.

ρ
xBB Dyo

+
=

1

1

��

�
��

� +−+−= 8642

229376
7605

1024
45

384
25

8
11 wwwwBB yoY

��

�
��

� +−+−−= 8642

458752
14365

14336
585

128
15

24
51),1(

2
wwwwxSIGNwBB yoX



3

3.  Basic parameters

The ring contains 8 combined function dipoles with [1]

BD = 1.453 T
ρ = 0.52 m
n = 1/2 (field index)

The dipole parameters fix the central momentum po and related quantities

po = 0.226 511 190 GeV/c
Eo = 0.249 942 008 GeV
KEo = 0.144 283 651 GeV
γo = 2.365 567 81
βo = 0.906 254 980

The bend angle of 45o fixes the arclength in the dipole

sD =  0.408 407 045 m

The revolution time around the ring depends on the detailed momentum profile of the reference particle.
Starting at po the momentum will increase in the RF cavities in front of the hydrogen absorber, fall
precipitously in the absorber, then increase again back to po in the RF cavities after the absorber. However,
we expect the average momentum over the whole path to be close to po . In that case using

mµ = 0.105 658 357 GeV/c2
c = 2.997 924 58 108 m/s

we find that the revolution time is

TREV ≈ 136.020 ns

For the stated RF frequency of 201.25 MHz, the RF period is 4.9689 ns and the harmonic number is 27.37,
not the integer value 28 given in [1].
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4.  Reference particle

ICOOL uses an internal reference particle to set the absolute phases of the RF cavities. The algorithm
chosen starts with an on-axis particle with momentum po and all stochastic processes turned off. The
particle is tracked thru all regions except RF cavities. We took the length of liquid hydrogen absorber [1]

LABS = 1.334 m

The particles loses 40.27 MeV in the absorber. This energy is made up in the 16 RF cavities in the straight
section. The cavities are assumed to have pillbox fields with sinusoidally varying electric and magnetic
fields and to have a length and peak on-axis gradient

LCAV = 0.32 m
G = 15 MV/m

The phase algorithm assumes the reference particle gains energy at a constant rate while crossing each
cavity. The parameter that specifies this rate

GRADREF = 7.865 179 082  MV/m

was adjusted so that the reference particle had momentum po after leaving the 16th cavity. This fixes the
reference particle trajectory. The time that the reference particle crosses the center of each cavity is
determined and used to set the time that cavity is at zero-crossing of the electric field. With the appropriate
parameters set to ~9 significant figures and using the double precision version of the code, the reference
particle stayed on-axis for 15 complete turns, even without using the solenoid focusing. The final radial
position error was ~0.2 µm and the transverse momentum error was ~5 10-8 GeV/c.

We can use the reference particle trajectory to get a more accurate estimate of the revolution time. The
upper left part of Fig. 2 shows the energy profile thru one quadrant of the ring. The rate of energy increase
in the RF cavities is constant by design. The corresponding velocity profile is shown in the upper right part
of the figure. This was used in a piecewise integration to obtain the accumulated time profile in the lower
part of the figure. We find that the revolution time is

TREV = 136.1341 ns

Taking the harmonic number [1]

h = 28

The corresponding RF period and frequency is

TRF = 4.8619 ns.
fRF = 205.6795 MHz
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5.  Real on-axis, on-momentum particle

Now that the absolute cavity phases have been fixed we can look at tracking real particles. We assume that
the cavities in the other three quadrants of the ring have the same absolute phase as the corresponding
cavity in the first quadrant. We take a particle with momentum po. In order for the particle to get
accelerated in the cavities we shift its launch time relative to the reference particle. By setting a parameter

T0REF = -0.473 248 92  ns

the particle phase crossing the cavities is just right to end up with momentum po after leaving the 16th RF
cavity. This corresponds to a synchronous phase of 35.0o.

However, there is a time shift of 8.8 ps between the real particle and the reference particle when leaving the
16th cavity. This means the real particle will enter the first cavity in the next quadrant at a different phase
than it entered the first cavity in the first quadrant. Part of this time difference comes about because the real
particle does not have the same momentum profile through the cavities and absorbers that was assumed for
the reference particle. We attempted to reduce this error by setting an additional phase offset in each cavity
in the first quadrant so that the momentum profile matched that of the reference particle. These phase
offsets were small, the largest being 0.27o. However, the resultant time shift after the 16th cavity was only
reduced to 7.8 ps with this procedure.

We showed that this time difference is small enough for multiturn tracking to work. A special run with the
dipole fields set to 0 and no transverse focusing showed that the track successfully traversed a distance
equivalent to 15 times the circumference, which in turn shows that this is a phase-stable solution.

With the dipole fields on and transverse focusing on, the real particle completed 15 turns around the ring.
At the end the particle was ~0.03 mm off the axis and had a transverse momentum of ~0.01 MeV/c.

6.  Transverse dynamics

Particles make ~5 betatron oscillations traversing the long straight section where the peak solenoid field is
5.17 T. The betatron wavelength is ~1.3 m.
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7.  Bend region

We checked the dispersion suppression in the design by looking at a simplified system consisting only of
the dipole-short solenoid-dipole combination. For the first part of the study the wedge at the center of the
solenoid was removed. On-axis particles were launched1 with momenta near po. We adjusted the overall
current density scale factor in order to minimize the transverse beam position and momentum at the end of
the simplified system. This optimization was not straightforward since for some solutions the particles were
subsequently lost in multiturn tracking. The dynamics of the ring seem to be strongly influenced by the
exact design of this complicated field flip plus wedge region. The chosen solution produced a peak field of
2.72 T and a field at the solenoid hard edge of 2.064 T, in rough agreement with Fig. 3 in [1].  Adjusting
the two coil current densities in the field flipping short solenoid independently did not improve the results.

We also used the dipole-short solenoid-dipole combination to check for proper operation of the LiH wedge.
An on-axis beam was used with momentum spread σPZ = 18 MeV/c. The beam is dispersed in x by the first
dipole. The solenoidal field between the dipole and the wedge rotates the dispersion so that it lies mainly in
the y direction going into the wedge. The wedge properties were [1]

αW = 25.4o

width = 29 cm
thickness = 13.07 cm

The wedge is oriented vertically with the apex touching the beam axis. The effect of the wedge on the
kinetic energy [MeV] of the beam is given in the table.

y > 0 y < 0
Before the wedge 129.9 ± 10.9 158.9 ± 11.1
After the wedge 129.9 ± 10.9 156.5 ± 9.4

We see that, as desired, the average energy and the energy spread are reduced in one half of the vertical
dimension and left alone in the other half.

The dispersion functions following the second dipole are shown in Figs. 3 and 4. The wedge was included
in these simulations. The momentum region over which the displacement is small is ~10 MeV, limited
mainly by the dispersion in x.

                                                          
1 For some unknown reason the multi-turn dynamics for the real ring were unstable if the scale factor was
set to exactly correspond to po.
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8.  Ring behavior for off-momentum particles

Several properties of the ring can be determined from tracking particles with momentum unequal to po
through a single turn. The compaction factor is [3]

The transition gamma is [3]

The slip factor is [3]

We find
αp = 1.223 10-3

γt = 28.590
η = 0.177

The longitudinal beta function is [4]

where our synchronous phase is measured from zero-crossing. We find

βφ = 0.0181 MeV-1

By observing the counter-clockwise rotation of the bunch in longitudinal phase space, we determined that
the synchrotron wavelength is approximately the same as the circumference of the ring (~37 m).

An indication that the motion thru the wedges is not properly synchronized yet in the simulation can be
seen in Fig. 5, which shows pZ for a particle that starts on-axis with p = 220 MeV/c. Although the particle is
successfully tracked through 15 complete turns without being lost, the wedges do not damp the longitudinal
momentum spread. The motion is regular for the first ~5 turns, after which the amplitude of the oscillations
increase significantly. Similar behavior is seen for a particle starting at 233 MeV/c.
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9.  Initial beam conditions

We assume the initial beam parameters were [1]

σX = σY = 4 cm
σPX = σPY = 32 MeV/c
σZ = 8.9 cm
σPZ = 18 MeV/c (without correlation)

The initial beam was given a transverse amplitude-momentum correlation according to the following
prescription [5]. Let us define the Balbekov amplitude

The quantities {r, x’, y’} are randomly chosen to determine the initial value of this amplitude. The quantity
β⊥ is fixed at 30 cm, as in [1]. Once AB is known, we set the total energy of the particle according to

The quantity EREF is fixed at 250 MeV, as in [1], and ∆E was selected randomly. Fig. 6 shows the resulting
correlation of total energy versus the Balbekov amplitude when ∆E=0.

10.  Full beam simulations

We are just beginning to look at gaussian beam simulations. Stochastic effects are still neglected. We first
looked at the beam injected after a dipole and before a long straight section. The energy-amplitude
correlation was applied to the beam. The transmission after one turn was 70%. Fig. 7 shows the
longitudinal phase space after one turn. The major problem seems to be particles falling out of the RF
bucket.

Notes and references

[1] V. Balbekov et al, Muon ring cooler for the MUCOOL experiment, Proc. PAC 2001.
[2] The coefficients of these expansions were taken from the Geant parameter file mucool.rcp in Oct. 2001.
[3] A. Chao & M. Tigner, Handbook of Accelerator Physics and Engineering, World Scientific, 1999, p.
50-1.
[4] D. Neuffer, Calculations of predicted performance for µ-cooling rings, MC note 227, 2001.
[5] V. Balbekov, private communication, 12 December 2001.
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Figure 2  Energy and  velocity profiles and accumulated time for reference particle through one quadrant
of the ring.
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Figure 3 Horizontal dispersion after the second dipole.

Figure 4  Vertical dispersion after the second dipole.
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Figure 5  Longitudinal momentum for a track starting on-axis with p = 220 MeV/c.
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Figure 6  Initial value of the total energy as a function of the Balbekov amplitude

.

Figure 7  Longitudinal phase space after one turn.
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